• 1 MPA information
  • 2 Data information
    • 2.1 Metadata
  • 3 Geographical extent
    • 3.1 Coordinates
    • 3.2 MPA area
  • 4 Shipping density
    • 4.1 Fishing
    • 4.2 Service
    • 4.3 Dredging
    • 4.4 Sailing
    • 4.5 Pleasure Craft
    • 4.6 High Speed craft
    • 4.7 Tug and towing
    • 4.8 Passenger
    • 4.9 Cargo
    • 4.10 Tanker
    • 4.11 Military
    • 4.12 Other
    • 4.13 Unknown
  • 5 Statistics
    • 5.1 Distribution
    • 5.2 Global traffic
  • 6 Hierarchical clustering
    • 6.1 Yearly densities
    • 6.2 Classification by activities
    • 6.3 Maritime activities clusters
    • 6.4 Boxplot
  • 7 All data
  • 8 Open-notebook

1 MPA information

Wdpaid:
555539441
Pa_def:
1
Name:
Tte de Canyon du Cap Ferret
Orig_name:
Tte de Canyon du Cap Ferret
Desig:
Special Protection Area (Birds Directive)
Desig_eng:
Special Protection Area (Birds Directive)
Desig_type:
Regional
Iucn_cat:
Not Reported
Int_crit:
Not Applicable
Marine:
2
Rep_m_area:
0
Gis_m_area:
3654.12517516074
Rep_area:
3656.39
Gis_area:
3654.12517515975
Not_take:
Not Reported
Not_tk_take:
0
Status:
Designated
Status_yr:
2009
Gov_type:
Federal or national ministry or agency
Own_type:
Not Reported
Mang_auth:
Not Reported
Mang_plan:
Not Reported
Verif:
State Verified
Metadata_i:
1832
Sub_loc:
Not Reported
Parent_iso:
FRA
Iso3:
FRA

2 Data information

EMODnet Vessel Density maps were created by Cogea in 2019 in the framework of EMODnet Human Activities, an initiative funded by the EU Commission. The maps are based on AIS data purchased by Collecte Localisation Satellites (CLS) and ORBCOMM. The maps show shipping density in 1km*1km cells of a grid covering all EU waters (and some neighbouring areas). Density is expressed as hours per square kilometre per month. The following ship types are available:0 Other, 1 Fishing, 2 Service, 3 Dredging or underwater ops, 4 Sailing, 5 Pleasure Craft, 6 High speed craft, 7 Tug and towing, 8 Passenger, 9 Cargo, 10 Tanker, 11 Military and Law Enforcement, 12 Unknown and All ship types. Data are available by month of year.

2.1 Metadata

Access metadata from dataset’s landing page

3 Geographical extent

3.1 Coordinates

## [1] "West-Longitude: -2.61"
## [1] "South-Latitude: 44.47"
## [1] "East-Longitude: -1.92"
## [1] "North-Latitude: 45.07"

3.2 MPA area

3.2.1 Topography

3.2.2 Geographical location

Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

4 Shipping density

4.1 Fishing

4.2 Service

4.3 Dredging

## ERROR: No data available

4.4 Sailing

4.5 Pleasure Craft

4.6 High Speed craft

4.7 Tug and towing

4.8 Passenger

4.9 Cargo

4.10 Tanker

4.11 Military

4.12 Other

4.13 Unknown

5 Statistics

5.1 Distribution

5.1.1 Annual means

ABCDEFGHIJ0123456789
allgroup
<fctr>
mean2017
<dbl>
mean2018
<dbl>
mean2019
<dbl>
mean2020
<dbl>
fishing7.4101815536.2111762176.069668297.3741245027
service0.0609040240.0552984280.043678310.0818068085
dredging0.0000000000.0000000000.000000000.0000000000
sailing0.0390851220.0998236860.104020700.0841682826
pleasure0.0248267310.0714501790.100059280.1316326235
speedcraft0.0000000000.0000000000.000000000.0040969781
tug0.0043163770.0026676460.003555020.0010551651
passenger0.0378788020.0391424890.040375520.0029916410
cargo0.2692697400.3362772770.335185590.3367188214
tanker0.1011328810.1028720700.102775270.0710442370

5.1.2 Annual percentages

ABCDEFGHIJ0123456789
allgroup
<fctr>
mean2017
<dbl>
mean2018
<dbl>
mean2019
<dbl>
mean2020
<dbl>
fishing79.3245667571.4741225874.6080412087.956653518
service0.651965850.636337860.536891440.975770495
dredging0.000000000.000000000.000000000.000000000
sailing0.418398701.148705201.278616941.003937548
pleasure0.265765380.822201571.229923421.570079953
speedcraft0.000000000.000000000.000000000.048867697
tug0.046205980.030697510.043698120.012585737
passenger0.405485280.450425970.496293800.035683521
cargo2.882480723.869657294.120083504.016295181
tanker1.082608011.183783991.263308160.847397320

5.2 Global traffic

ABCDEFGHIJ0123456789
year
<fctr>
value
<dbl>
20179.341597
20188.690105
20198.135408
20208.383817

6 Hierarchical clustering

6.1 Yearly densities

Yearly Vessel densities (2017-2020) by activity type:

  • Dredging
  • Fishing
  • Sailing
  • Services
  • Transport

6.2 Classification by activities

Classification of vessel densities by activity type

6.3 Maritime activities clusters

Overall classification of maritime activities seen by AIS

6.4 Boxplot

Boxplot of the maritime activities by clusters

7 All data

Monthly means (hours/km2)

## [1] "01/ Fishing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.24741290.40065710.58754260.57486189
20.42176290.24053350.32692910.32941692
30.31853580.28178640.37415500.27743475
40.87712650.41724660.46167400.74088449
50.75957500.98288520.49576971.12237490
60.46059990.79284640.86246940.92866906
70.82500820.80604350.57063751.23936986
80.70014320.37989410.69960741.18416721
91.22150690.56244790.56882060.32441552
100.73859030.38881840.60607640.20074223
## [1] "02/ Service"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.0000000000.0000000000.00000000000.0004712240
20.0000000000.0000000000.00000000000.0000000000
30.0000000000.0000000000.00000000000.0000000000
40.0000000000.0000000000.00136193860.0115220455
50.0113530570.0000000000.00353377200.0090256513
60.0000000000.0004049510.00445176400.0087657342
70.0000000000.0000000000.00000000000.0000000000
80.0080469680.0076992840.00342314430.0399116279
90.0241315060.0267099720.01274685010.0074939855
100.0000000000.0101956310.01649061730.0003294301
## [1] "03/ Dredging"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10000
20000
30000
40000
50000
60000
70000
80000
90000
100000
## [1] "04/ Sailing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.00000000000.0000000000.00000000000.0000000000
20.00000000000.0000000000.00000000000.0000000000
30.00044461010.0000000000.00092777060.0000000000
40.00305626520.0000000000.00032443350.0000000000
50.00000000000.0108883700.00420645830.0002823473
60.01184389450.0097656540.00563253880.0070029486
70.00750602710.0237296050.06058322980.0472332704
80.01408213080.0400764570.02851719560.0207925633
90.00192647740.0136118240.00285230330.0060049282
100.00022571630.0015772630.00097677070.0028522248
## [1] "05/ Pleasure Craft"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.00000000000.00000000000.00000000000.0000000000
20.00000000000.00000000000.00000000000.0000000000
30.00000000000.00000000000.00000000000.0000000000
40.00000000000.00000000000.00345886830.0000000000
50.00055392920.00000000000.00078522230.0002933925
60.00090954160.00062414930.00526309450.0026901213
70.00130046170.00170064820.02658959230.0771216584
80.01242684500.03420523000.04222017030.0452316344
90.00492335440.03352990890.01826303400.0062958168
100.00471259920.00074762810.00045062030.0000000000
## [1] "06/ High Speed Craft"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10000.0000000000
20000.0000000000
30000.0004111551
40000.0000000000
50000.0000000000
60000.0006092228
70000.0011962330
80000.0018803672
90000.0000000000
100000.0000000000
## [1] "07/ Tug and Towing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.00000000000.00000000000.0000000000.001055165
20.00000000000.00000000000.0018613970.000000000
30.00060921750.00000000000.0000000000.000000000
40.00000000000.00025362080.0016936230.000000000
50.00000000000.00000000000.0000000000.000000000
60.00370715900.00000000000.0000000000.000000000
70.00000000000.00000000000.0000000000.000000000
80.00000000000.00000000000.0000000000.000000000
90.00000000000.00241402520.0000000000.000000000
100.00000000000.00000000000.0000000000.000000000
## [1] "08/ Passenger"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.0000000000.0020101190.00000000000.0000000000
20.0000000000.0000000000.00279039610.0000000000
30.0000000000.0000000000.00494860460.0000000000
40.0057092420.0024108180.00407602730.0000000000
50.0080953940.0070534040.00830850010.0000000000
60.0057470400.0041937310.00290902770.0000000000
70.0033838070.0037237260.00675255350.0005980279
80.0000000000.0038951380.00064059530.0000000000
90.0081222600.0079998940.00604244900.0000000000
100.0044961850.0048302040.00281433240.0000000000
## [1] "09/ Cargo"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.0075421650.0167468490.016299410.020387573
20.0127725580.0084475150.024303610.029679239
30.0205667000.0064299280.039791920.026112631
40.0304278130.0187803850.032006720.021909076
50.0138624490.0323920200.023801830.051416373
60.0236212350.0322837150.031119370.019680507
70.0321485560.0351562790.026514200.049336248
80.0315918320.0260845290.040017390.053156786
90.0240778990.0462685120.030178230.029846795
100.0336348530.0486827280.026562950.007559821
## [1] "10/ Tanker"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.00025567430.00550417470.0055243660.0072685780
20.00424452070.00224265290.0121365120.0069872190
30.00714738370.00076558390.0079201440.0092640848
40.00668634730.00923408440.0092372680.0079571829
50.01218361540.01461163060.0094578060.0112974285
60.01644789210.00964776190.0061784140.0018946380
70.00820903840.00809687160.0159293440.0077790045
80.00801079660.00744955550.0097460460.0073631879
90.01302499080.01599497660.0069238050.0055807100
100.01197573740.01027898040.0060169550.0006963732
## [1] "11/ Military and Law Enforcement"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
100.000000e+000.00000000000.000000000
200.000000e+000.00068948940.000000000
302.519427e-030.00000000000.000000000
400.000000e+000.00473285010.000000000
506.687413e-050.00167281320.000000000
600.000000e+000.00328401680.000000000
701.025072e-030.01217466970.012156479
806.482325e-040.00000000000.014605069
900.000000e+000.00015337920.001231884
1003.357351e-030.00000000000.000000000
## [1] "12/ Unknown"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.0000000000.0000000000.0000000000.0003784484
20.0000000000.0000000000.0022734890.0000000000
30.0000000000.0000000000.0042325570.0000000000
40.0000000000.0040880540.0140549110.0000000000
50.0000000000.0483787470.0141069500.0000000000
60.0021333220.0038183290.0092777620.0000000000
70.0000000000.0194474160.0189629100.0000000000
80.0063222190.0034839130.0000000000.0000000000
90.0023126000.0031242290.0028199760.0000000000
100.0021249050.0067436000.0165908620.0000000000
## [1] "13/ Other"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.0000000000.0000000000.0000000000.0003784484
20.0000000000.0000000000.0022734890.0000000000
30.0000000000.0000000000.0042325570.0000000000
40.0000000000.0040880540.0140549110.0000000000
50.0000000000.0483787470.0141069500.0000000000
60.0021333220.0038183290.0092777620.0000000000
70.0000000000.0194474160.0189629100.0000000000
80.0063222190.0034839130.0000000000.0000000000
90.0023126000.0031242290.0028199760.0000000000
100.0021249050.0067436000.0165908620.0000000000
## [1] "14/ Global traffic"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.26871660.43396130.68322120.60631547
20.47285710.25155190.37620870.37180798
30.36052700.30381750.45398120.31683343
40.99414370.45560270.55342150.81798859
50.84001451.25368360.71629411.23425306
60.68496860.97233811.28583061.00409443
71.18028251.22105531.01517781.50700258
81.19021750.70772201.02719641.40266178
91.40480921.08895100.67056060.40357611
100.84826770.66616520.70184740.21690121

8 Open-notebook

Access MyBinder.org/Marine-Analyst virtual environment.
More info at Marine-Analyst.eu

This document produced by Marine-analyst.eu is licensed under CC BY-NC 4.0