• 1 Data information
    • 1.1 Metadata
  • 2 Geographical extent
    • 2.1 Coordinates
    • 2.2 Defined area
  • 3 Shipping density
    • 3.1 Fishing
    • 3.2 Service
    • 3.3 Dredging
    • 3.4 Sailing
    • 3.5 Pleasure Craft
    • 3.6 High Speed craft
    • 3.7 Tug and towing
    • 3.8 Passenger
    • 3.9 Cargo
    • 3.10 Tanker
    • 3.11 Military
    • 3.12 Other
    • 3.13 Unknown
  • 4 Statistics
    • 4.1 Distribution
    • 4.2 Global traffic
  • 5 Hierarchical clustering
    • 5.1 Yearly densities
    • 5.2 Classification by activities
    • 5.3 Maritime activities clusters
    • 5.4 Boxplot
  • 6 All data
  • 7 Open-notebook

1 Data information

EMODnet Vessel Density maps were created by Cogea in 2019 in the framework of EMODnet Human Activities, an initiative funded by the EU Commission. The maps are based on AIS data purchased by Collecte Localisation Satellites (CLS) and ORBCOMM. The maps show shipping density in 1km*1km cells of a grid covering all EU waters (and some neighbouring areas). Density is expressed as hours per square kilometre per month. The following ship types are available:0 Other, 1 Fishing, 2 Service, 3 Dredging or underwater ops, 4 Sailing, 5 Pleasure Craft, 6 High speed craft, 7 Tug and towing, 8 Passenger, 9 Cargo, 10 Tanker, 11 Military and Law Enforcement, 12 Unknown and All ship types. Data are available by month of year.

1.1 Metadata

Access metadata from dataset’s landing page

2 Geographical extent

2.1 Coordinates

## [1] "West-Longitude: -7"
## [1] "South-Latitude: 35.2"
## [1] "East-Longitude: -4.3"
## [1] "North-Latitude: 36.9"

Add another dataset for defined area to dashboard

2.2 Defined area

Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

3 Shipping density

3.1 Fishing

3.2 Service

3.3 Dredging

3.4 Sailing

3.5 Pleasure Craft

3.6 High Speed craft

3.7 Tug and towing

3.8 Passenger

3.9 Cargo

3.10 Tanker

3.11 Military

3.12 Other

3.13 Unknown

4 Statistics

4.1 Distribution

4.1.1 Annual means

ABCDEFGHIJ0123456789
allgroup
<fctr>
mean2017
<dbl>
mean2018
<dbl>
mean2019
<dbl>
mean2020
<dbl>
fishing8.05066087.425807798.519315088.21028206
service4.40625024.898312815.434354275.99649320
dredging0.82266310.561322990.831479051.27061919
sailing12.698448716.1068130918.9767779118.02878440
pleasure9.904280410.7748928213.0309252915.74709328
speedcraft2.05540982.127550642.141939821.56899639
tug6.28372346.484211867.281185187.41362641
passenger4.51439834.176585094.245617043.84886647
cargo25.912128124.9936869925.8138426125.53499679
tanker18.334539117.3155632518.9214288020.48990941

4.1.2 Annual percentages

ABCDEFGHIJ0123456789
allgroup
<fctr>
mean2017
<dbl>
mean2018
<dbl>
mean2019
<dbl>
mean2020
<dbl>
fishing7.80568177.048530477.367292426.99978680
service4.27216944.649447994.699494825.11239122
dredging0.79762970.532804280.719042461.08328354
sailing12.312038815.2884866016.4106469615.37068351
pleasure9.602896210.2274611111.2688210613.42539694
speedcraft1.99286432.019457811.852296441.33766906
tug6.09251176.154773486.296588396.32058727
passenger4.37702653.964388543.671504343.28140307
cargo25.123630123.7238519322.3231709821.77020620
tanker17.776624716.4358247316.3627824317.46894886

4.2 Global traffic

ABCDEFGHIJ0123456789
year
<fctr>
value
<dbl>
2017103.1385
2018105.3526
2019115.6370
2020117.2933

5 Hierarchical clustering

5.1 Yearly densities

Yearly Vessel densities (2017-2020) by activity type:

  • Dredging
  • Fishing
  • Sailing
  • Services
  • Transport

5.2 Classification by activities

Classification of vessel densities by activity type

5.3 Maritime activities clusters

Overall classification of maritime activities seen by AIS

5.4 Boxplot

Boxplot of the maritime activities by clusters

6 All data

Monthly means (hours/km2)

## [1] "01/ Fishing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.61086880.58807350.66056620.7715435
20.61787480.51918400.53769570.6123209
30.71008980.46893300.57668150.6144904
40.55039120.62876520.67431500.5857650
50.77683970.73269260.81606290.6332067
60.76628990.75378930.86200670.7581769
70.93367700.78036600.96868720.9992857
80.87778360.83808170.93798820.8450099
90.52970620.48190900.63619410.6044940
100.34692330.31963540.44639160.3987188
## [1] "02/ Service"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.38505660.42938650.42726400.5384807
20.30889390.41730380.39813610.4821898
30.32580170.42245100.42333670.5265035
40.32846700.43075330.42316000.4780895
50.36341400.38303030.44038680.4947541
60.37628900.36999440.45866740.4495698
70.39984380.40491690.46286390.4856928
80.38436780.41980010.49285340.5184386
90.39484940.38617150.47027720.4942727
100.38551620.43196760.51413510.5426347
## [1] "03/ Dredging"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.041222650.036694500.057241330.08973581
20.084949490.034198050.030507640.08606102
30.125874000.040609760.046257800.12881500
40.081454690.017835260.051649160.13332514
50.082822640.038662810.073590790.16563689
60.054161820.077418200.082910960.11813000
70.046310370.048118930.091692400.13134053
80.080804020.046638360.098495520.11533447
90.054380660.050801460.096657340.10299450
100.065942760.049580920.097694910.07977459
## [1] "04/ Sailing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.66510060.97440201.12218861.3576909
20.70573970.80539060.97733721.0862214
30.89893411.01289791.17601691.3965001
41.00035861.18434241.27465660.9534378
51.05196021.50472771.53319831.2011134
61.08833251.39278431.74220941.5483629
71.33701881.52663191.96947821.8508349
81.34819751.61546592.09313241.9628657
91.26299741.37923661.88363941.7869565
101.34863351.88267682.08178201.7261022
## [1] "05/ Pleasure Craft"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.63001600.71052770.70180201.054294
20.65363740.62844050.63607691.022854
30.74438850.73430960.70324141.305418
40.87413490.81318600.91096321.065758
50.92993960.95355701.11469651.182145
60.99335391.11798971.31119541.415551
70.95255521.05775381.25004341.718356
80.90356481.17186831.50094041.709386
90.85852710.88844831.27736221.416804
100.85266860.93076301.32961801.424541
## [1] "06/ High Speed Craft"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.17227160.16790450.20693280.15778535
20.13087540.16009110.19105520.13274394
30.13218430.18311170.18689360.15134852
40.16745570.15428070.16699780.13162988
50.20750150.16206220.17862380.15432868
60.17686610.16155320.17501740.12522522
70.17440340.16570770.17863550.12885292
80.19879650.18496240.18589220.12125779
90.21020070.20211280.16837010.09611635
100.16985700.20241880.19803290.10203057
## [1] "07/ Tug and Towing"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.54090440.53637610.63354650.6508779
20.53694150.47704830.57090860.5312667
30.60452300.48643530.56202560.6217696
40.51737060.49404520.58480100.5626507
50.53818950.49546360.58685200.6341901
60.52011030.51376580.60778580.6015082
70.50740390.55283830.62290550.6240460
80.49015250.54658480.62570470.6286633
90.47619450.51301660.56407610.6206123
100.51092730.57816690.69587680.6689202
## [1] "08/ Passenger"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.32718640.24748400.31095010.2625761
20.29035380.24591180.27106950.2462884
30.39372220.22861120.33208190.2959848
40.40686190.35075250.35700020.2943011
50.46362570.40653190.38996780.3279791
60.36042070.39522590.36822890.2723452
70.41024150.41237410.40611420.3203454
80.42210670.42427360.45819670.3818146
90.42299640.37682470.40325150.3562783
100.36676550.41625700.37728200.3769517
## [1] "09/ Cargo"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
11.9761172.1524072.0786012.067082
22.0760672.0314391.8632011.840221
32.1554672.2796751.9978062.209933
42.0840732.2303072.0518172.116089
52.1920722.0350312.1437612.223131
62.2130912.0306202.0894662.202622
72.4752442.2708122.1356672.284040
82.4633012.0930332.4056132.314165
92.0827911.9145552.2922372.162606
102.1469881.9444222.4347512.050508
## [1] "10/ Tanker"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
11.2735521.4134441.6119611.780969
21.5388761.3256031.4626501.387019
31.6546131.4614381.5545821.788953
41.4854321.3878681.4433921.726108
51.5516421.4420511.5733531.787346
61.5364991.4192621.5176691.804241
71.6932601.5785311.5413841.849450
81.5293811.5885701.7697071.751162
91.5658541.3880261.6303731.715854
101.5740191.4913601.6239151.757632
## [1] "11/ Military and Law Enforcement"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.13764850.12798690.103972850.09395124
20.11944960.12885740.096314540.07251844
30.13355060.11570820.114588600.13069413
40.12136100.12841570.132718010.08234133
50.15234850.12082670.110988330.11459705
60.10973990.12308980.107826470.09586469
70.13840650.14903040.130347070.11681016
80.11360130.15487900.137785970.15214339
90.10784590.12920160.107961260.12649895
100.12294420.11670850.143537520.10796642
## [1] "12/ Other"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.59468660.72594860.79356030.6711185
20.62767830.67667560.67348200.5564249
30.62587880.73178040.71130090.6651807
40.58282920.73454960.72350610.5147255
50.75733110.73787110.75465660.5963994
60.70691100.77418990.75198830.7881804
70.75109100.76754950.82590690.8592080
80.78645860.78727980.72484000.7295205
90.81755040.63946610.69738840.5465148
100.81993700.77076370.74631740.6878314
## [1] "13/ Unknown"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
10.00655683400.0023946620.0171982560.0052709551
20.01307010010.0108690500.0016884910.0024508123
30.01231278120.0070287730.0019105960.0000000000
40.01036259250.0094568150.0090379770.0025898554
50.01111113160.0074759520.0039240660.0000000000
60.01409950570.0031260980.0045810010.0007440319
70.01458314930.0044605080.0046935070.0006472661
80.01070188810.0039237650.0042435030.0023016463
90.01585452160.0059032220.0082601100.0013406053
100.00823178720.0037801210.0015355450.0015509746
## [1] "14/ Global traffic"
ABCDEFGHIJ0123456789
Month
<dbl>
Year_2017
<dbl>
Year_2018
<dbl>
Year_2019
<dbl>
Year_2020
<dbl>
17.3611888.1130308.7257869.501376
27.7044077.4610137.7101238.058581
38.5173398.1729908.3867249.835591
48.2105528.5645588.8040148.646811
59.0787979.0199849.7200619.514827
68.9161659.13280810.07955310.180521
79.8340399.71909110.58841811.368910
89.6092189.87536111.43539311.232064
98.7997488.35567210.23604710.031343
108.7193549.13850110.6908709.925162

7 Open-notebook

Access MyBinder.org/Marine-Analyst virtual environment.
More info at Marine-Analyst.eu

This document produced by Marine-analyst.eu is licensed under CC BY-NC 4.0